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1. INTRODUCTION

Portfolio constraints occur naturally when asset trades are affected by in-
stitutional arrangements or informational asymmetry. In many cases, these con-
straints can be represented by a convex set in the portfolio space. For instance,
Luttmer (1996) shows that a convex cone constraint is well-suited to describ-
ing short-selling restrictions, margin requirements, bid-ask spreads, and propor-
tional transaction costs. Portfolio constraints are also useful in analyzing credit-
based financial assets. Firms or individuals with poor credit may not qualify for
loans that are accessible to entities that have high credit quality.1 Information
asymmetry about credit quality often leads to development of many customized
or personalized financial contracts that cannot be publicly traded. If informa-
tion about future states that is dispersed among agents is not fully revealed in
equilibrium, they will trade assets with asymmetric information. Citanna and
Villanacci (2000a,b) exploit the fact that the measurability restrictions imposed
by informational asymmetry among agents can be represented by linear portfo-
lio restrictions.

This paper provides a sufficient condition for the existence of equilibrium
in financial markets under frictions such as short-selling restrictions, margin re-
quirements, bid-ask spreads, and proportional transaction costs. We develop a
modular approach to portfolio restrictions that consists of four steps based on
Won and Hahn (2003, 2007). To analyze the behavior of financial derivatives in
constrained financial markets, we introduce the concept of link portfolio. Link
portfolios constitute a particular type of constrained null-income portfolios that
generate a maximal linear subspace in the set of aggregate feasible portfolios.2

The four-step approach of the paper is built on two theoretical pillars: the fun-
damental theorem of portfolio decomposition and the allocational equivalence
between the original economy and the artificial economy built from projecting

1Borrowing interest rates are significantly affected by the credit quality of the borrower. For
instance, A-rated firms are not qualified to issue bonds in the bond markets for AAA-rated firms.

2Mathematically speaking, null-income portfolios are a portfolio in the kernel of the payoff
matrix. Nontrivial null-income portfolios exist if the payoff matrix does not have full rank.
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away link portfolios from the portfolio constraints.3 Investigating the existence
of equilibrium in constrained financial markets boils down to finding sufficient
conditions for the fundamental theorem of portfolio constraints to hold. We
present a general sufficient condition on portfolio constraints which embraces
portfolio restrictions of the literature such as Martins-da-Rocha and Triki (2005)
and Aouani and Cornet (2009, 2011).

The modular approach of the paper to the existence of equilibrium in con-
strained financial markets consists of the following four steps. The first step
provides the existence of equilibrium in economies that faces convex portfolio
constraints without nonzero link portfolios. The second step is to formulate con-
ditions for the fundamental theorem of portfolio decomposition to hold. In the
third step, link portfolios are removed from the economy to create an artificial
economy that belongs to the class of economies specified in the first step. The
final step shows that the original and artificial economies share the same equi-
librium allocations. This result guarantees the existence of equilibrium of the
original economy.

The fundamental theorem of portfolio decomposition, the first pillar, states
that each feasible portfolio can be split orthogonally into the income-determining
portfolio and the link portfolio. Income-determining portfolios generate contin-
gent income necessary to finance consumption in each state. Thus, what agents
care about in choosing a portfolio in the budget set is the income-determining
component of the portfolio. Income-determining portfolios have the nice prop-
erty that they allow us to find equilibrium portfolios in a bounded set of port-
folios. However, they alone need not be feasible under the portfolio constraints
and moreover the set of income-determining portfolios may not be closed. By
the conventional wisdom of the general equilibrium literature, the set of income-
determining portfolios is required to be closed for the existence of equilibrium
because they determine the magnitude of intertemporal income transfers. This
need not be the case. In fact, the real hard problem with link portfolios arises
when the individual sets of income-determining portfolios are not closed. The

3The origin of the two-pillar approach dates back to Won and Hahn (2007).
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fundamental theorem of portfolio decomposition provides an answer about how
to deal with the link portfolio problem. The first pillar provides a stepping stone
for the second pillar, the allocational equivalence between equilibria of the orig-
inal economy and the artificial economy where each agent faces the artificial
portfolio constraint identified as the closure of income-determining components
of the portfolios in the original portfolio constraints. Based on the fact that the
artificial economy has equilibrium, the two pillars are combined to show the
existence of equilibrium in the original economy. Specifically, the optimal port-
folios of the original economy come from tracing back the optimal portfolios of
the artificial economy to the original portfolio constraints through the portfolio
decomposition theorem.

The fundamental theorem of portfolio decomposition is built on the closed-

ness condition for contingent income redistributions (in short, CCIR condition)
and two technical conditions (to be stated in Assumption (A7)) which account
for the effect of link portfolios on the constrained set of risk-sharing opportuni-
ties. The CCIR condition exploits the intuition that a market-clearing portfolio
allocation induces income redistribution among the agents in future contingen-
cies. When redundant asset exists, the market-clearing portfolio allocation plus
an allocation of null-income portfolios induces the same contingent income re-
distribution (CIR). Thus there may exist a set of CIR-inducing feasible portfolio
allocations that need not clear the financial markets. For a given CIR, we choose
a convergent sequence of aggregate portfolios each of which is the sum of a CIR-
inducing feasible portfolio allocation over the agents. The CCIR condition holds
if the limit aggregate portfolio is spanned by a feasible portfolio allocation that
induces the same income redistribution. As illustrated in Example 5.1, the failure
of the CCIR condition may preclude the existence of equilibrium. Assumption
(A7) where the CCIR condition plays a pivotal role turns out to encompass all
the distinct conditions on portfolio constraints studied in the literature.

Won and Hahn (2003) make a first attempt to develop a general methodol-
ogy for portfolio decomposition, and illustrate how redundant assets contribute
to risk sharing under portfolio constraints. The portfolio restrictions of the pa-
per, Assumption (A7), cover portfolio constraints studied in the recent litera-
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ture such as Martins-da-Rocha and Triki (2005) and Aouani and Cornet (2009,
2011). Aouani and Cornet (2011) impose a closedness condition on the set of
individual incomes and their associated aggregate feasible portfolios. The port-
folio restrictions of Martins-da-Rocha and Triki (2005) are so distinct from those
of Aouani and Cornet (2011) that they do not imply each other. Both portfolio
restrictions imply Assumption (A7) and thus, are sufficient for the fundamental
theorem of portfolio decomposition to hold.

The effect of portfolio constraints on equilibrium was initially studied in
Siconolfi (1989), which has inspired subsequent research on constrained finan-
cial markets. Balasko et al. (1990), and Benveniste and Ketterer (1992) assume
that portfolio constraints are represented by linear homogeneous equations. Bal-
asko et al. (1990) develop an ingenious technique to handle the unboundedness
problem with link portfolios under linear portfolio constraints, but the approach
is not applicable in the presence of nonlinear portfolio constraints. Angeloni and
Cornet (2006), and Cornet and Gopalan (2010) consider various forms of con-
vex portfolio constraints in multi-period stochastic exchange economies. Aouani
and Cornet (2009) analyze polyhedral portfolio constraints.

2. MODEL

An economy with financial asset markets persists in two periods, 0 and 1.
Financial markets are open in the first period (period 0) while markets for con-
sumption goods are open in the second period (period 1). There are J financial
assets, indexed by j ∈ J = {1,2, . . . ,J}. Assets pay in monetary units in period
1. The payoffs are contingent on the realizations of uncertainty in period 1. The
uncertainty to be resolved in period 1 is represented by S states of nature, in-
dexed by s ∈ S = {1, . . . ,S}. Each asset j ∈ J pays r j(s) in state s. The payoffs
of J assets in state s are given by the J-dimensional row vector r(s) = (r j(s)) j∈J,
whereas the payoffs of asset j are summarized as the S-dimensional column vec-
tor r j = (r j(s))s∈S. The asset (payoff) structure is described by the S× J matrix
R = [(r(s))s∈S]. Redundant assets exist when J is greater than the rank of R.
There are L consumption goods in each state s ∈ S. Since consumption is avail-
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able only in period 1, the total number of commodities equals ` := LS, implying
that R` becomes the commodity space of the economy.

The economy is populated by I agents, indexed by i∈ I= {1,2, . . . , I}. Each
agent i ∈ I has the consumption set Xi with the initial endowment ei ∈ Xi of
commodities, and has a preference relation�i on Xi, which induces a correspon-
dence Pi on Xi such that for each xi ∈ Xi, Pi(xi) = {x′i ∈ Xi : x′i �i xi}. Portfolio
choices of agents may be constrained by market frictions or legal arrangements.
The portfolio constraint for agent i is represented by a set Θi in RJ with 0 ∈ Θi.
Agents are assumed to have zero initial endowments of marketed financial as-
sets.

For a pair (p,q) in R`×RJ and a point y in R`, we follow the notational
convention:

p21y :=


p(1) · y(1)

...
p(S) · y(S)

 , p2y :=

[
0

p21y

]
, W (q) :=

[
−q

R

]
.

The vector p21y indicates a stack of contingent expenditures on the consump-
tion y of period 1. The first entry in p2y is zero because no consumption arises
in period 0. Agent i’s open budget correspondence Bi : R`×RJ → 2Xi×Θi is
defined by

Bi(p,q) = {(xi,θi) ∈ Xi×Θi : p2(xi− ei)�W (q) ·θi} , 4

while budget correspondence c`Bi :R`×RJ→ 2Xi×Θi is defined by c`Bi(p,q) :=
c`[Bi(p,q)].5 Agent i’s choice (xi,θi) is �i-maximal in c`Bi(p,q) if (Pi(xi)×
Θi)∩ c`Bi(p,q) = /0. We let E := 〈(Xi,�i,ei,Θi)i∈I,R〉 denote the economy de-
scribed above.

Definition 2.1: A competitive equilibrium of economy E is a profile (p∗,q∗,x∗,θ ∗)∈
R`×RJ×∏i∈I Xi×∏i∈I Θi such that

4For two vectors v and v′ in an Euclidean space, v≥ v′ implies that v−v′ ∈R`
+; v > v′ implies

that v≥ v′ and v 6= v′; v� v′ implies that v− v′ ∈ R`
++

5For a nonempty subset A of an Euclidean space, we denote the closure of A by c`A and the
interior of A by intA.
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(i) (x∗i ,θ
∗
i ) ∈ c`Bi(p∗,q∗), ∀ i ∈ I,

(ii) (Pi(x∗i )×Θi)∩ c`Bi(p∗,q∗) = /0, ∀ i ∈ I,

(iii) ∑i∈I(xi− ei) = 0 and ∑i∈I θi = 0.

The results of the paper are built on the following five standard assumptions
and two additional conditions to be discussed in Section 3.

(A1) For each i ∈ I, Xi = R`
+.

(A2) Each Pi is strictly monotone, continuous, and convex-valued on R`
+, and

satisfies xi 6∈ Pi(xi) for each xi ∈ R`
+.6

(A3) Each ei is in the interior of R`
+.

(A4) Each Θi is a closed convex set in RJ with 0 ∈Θi.

Assumptions (A1)–(A3) are well-known conditions. Assumption (A4) can
be used to model institutional or informational frictions that prevail in real-world
financial markets. As illustrated in Luttmer (1996), it covers market frictions
such as short-selling constraints, margin requirements, bid-ask spreads, and pro-
portional transaction costs. Citanna and Villanacci (2000a,b) demonstrate that
the measurability restrictions on optimal portfolios, which naturally occur in the
asymmetric information model, are represented by linear portfolio restrictions.

3. LINK PORTFOLIOS AND CCIR CONDITION

3.1. LINK PORTFOLIOS AND EQUILIBRIUM ASSET PRICES

The source of link portfolios is redundant assets. Redundant assets exist
when the number of assets is greater than the rank of R. Let 〈R〉 denote the

6Let xi be a point in R`
+. The preference ordering Pi is strictly monotone if xi + v ∈ Pi(xi) for

every v ∈ R`
+\{0}, is continuous if both Pi(xi) and P−1

i (xi) := {x′i ∈ Xi : xi �i x′i} are open, and
is convex-valued if Pi(xi) is convex.
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subspace spanned by the row vectors of the payoff matrix R and 〈R〉⊥ be its
kernel, i.e., 〈R〉⊥ = {θ ∈ RJ : R · θ = 0}. Portfolios in 〈R〉⊥ are called null-

income portfolios. By definition, they pay nothing in each state of the second
period. The set 〈R〉⊥ is a nontrivial subspace when redundant assets exist.

Definition 3.1: Let {Θ′i : i ∈ I} be a collection of closed convex sets in RJ that
satisfies 0∈Θ′i for each i∈ I. A null-income portfolio η is called a link portfolio

for {Θ′i : i ∈ I} if, for all λ ∈ R, it satisfies λη ∈ ∑i∈I(Θ
′
i∩〈R〉⊥).

Let L(Θ) denote the set of link portfolios for the portfolio constraints {Θi :
i ∈ I} and M(Θ) denote its orthogonal complement in 〈R〉⊥. Then each θ ∈ RJ

has the orthogonal decomposition θ = η +(θ −η) with η ∈ L(Θ) and θ −η ∈
〈R〉+M(Θ). The portfolio η is the link component (or portfolio) and θ − η

is called the income-determining component (or portfolio) of θ . A portfolio
in Θi gives the same level of contingent incomes in the future as its income-
determining portfolio. The latter need not be feasible, however, under the port-
folio constraint.

A link portfolio for {Θi : i ∈ I} is an aggregate of individually feasible null-
income portfolios that span a line in the set ∑i∈I(Θi∩〈R〉⊥). Thus, the set of link
portfolios L(Θ) is the maximal subspace in ∑i∈I(Θi∩〈R〉⊥). For a convex set A

in RJ , let K(A) denote the recession cone of A and L (A) denote the maximal
subspace in A−{a} for some a∈ A.7 It holds that L(Θ) =L

(
∑i∈I(Θi∩〈R〉⊥)

)
.

For each i ∈ I, let Ci denote the set K(Θi)

Let L(C) denote the set of link portfolios for {Ci : i ∈ I} and M(C) de-
note the orthogonal complement of L(C) in 〈R〉⊥. By definition, it holds that
L(Θ)+M(Θ) = L(C)+M(C) = 〈R〉⊥. The portfolio space RJ has the following
decompositions

RJ = 〈R〉+ 〈R〉⊥ = 〈R〉+M(Θ)+L(Θ).

7The recession cone of the convex set A is defined as {v ∈ Rm : A + v ⊂
A}. When A is closed, so is K(A). In this case, the recession cone K(A)
is equivalent to the asymptotic cone of A and so it is expressed as K(A) =
{v ∈ Rm : ∃sequences{xn} in A and {an} in R++ such that an→ 0 and anxn→ v} . How-
ever, K(A) need not be closed if A is not closed and thus K(A) 6= K(c`(A)) in general. See
Rockafellar (1970) for the properties of recession cone.
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Since each Ci is in Θi, L(C) is in L(Θ). It is worth noting that L(Θ) = {0} if and
only if L(C) = {0}, and thus L(C) is the source of link portfolios.

For each i ∈ I, let Θi denote the orthogonal projection of Θi onto 〈R〉+
M(Θ). The set Θi is the collection of income-determining components of port-
folios in Θi. Note that Θi need not be closed. Let Ci denote the recession cone
of c`(Θi). To discuss the existence of equilibrium, we need to introduce the sets
of viable prices. By Theorem 3.1, they must lie in 〈R〉+M(Θ). We define sets
Qi and Q of no-arbitrage asset prices by

Qi = {q ∈ 〈R〉+M(Θ) : q ·θi > 0 for all θi ∈Ci with R ·θi > 0}

and Q =
⋂

i∈I Qi.8

We recall that no consumption arises in period 0. Thus, equilibrium may
fail to exist if portfolio constraints are so tight that agents cannot trade assets to
make positive income transfer to future states. To avoid the problem, we need to
impose the following condition.

(A5) For each i ∈ I, there exists vi ∈Ci such that R · vi > 0.

(A6) For each q ∈ c`(Q)\{0} and for each i ∈ I, there exists θi ∈ Θi such that
q ·θi < 0.

Assumption (A5) ensures that no satiation occurs in the case without con-
sumption in period 0. It is illustrated in Polemarchakis and Siconolfi (1993) that
no equilibrium exists in a one-good economy which fails to satisfy Assump-
tion (A5) because agents have a satiation portfolio in the reduced-form econ-
omy.9 Assumption (A6) combined with Assumption (A3) constitutes a survival
condition for constrained financial markets. They ensure the presence of con-
sumptions which are cheaper than attainable incomes in each contingency in
equilibrium.

8As shown in Won and Hahn (2007), prices in Qi are ‘arbitrage-free’ with respect to so-
called ‘projective arbitrage’. The no projective arbitrage condition is necessary for the existence
of equilibrium in constrained financial markets with derivatives.

9Assumption (A5) can be dispensed with in the case that preferences are strictly monotone
and consumption is available in the initial period.
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The following shows that link portfolios have null value in equilibrium.

Theorem 3.1: Suppose Assumptions (A1), (A2), (A4), and (A5) hold. If q is an
equilibrium asset price of E, then q ·η = 0 for all η ∈ L(Θ).

PROOF : See Appendix.

Theorem 3.1 implies that equilibrium asset prices are orthogonal to L(Θ),
i.e., they are in 〈R〉+M(Θ). The property of equilibrium asset prices plays an
important role in verifying the existence of equilibrium.

3.2. ECONOMIES WITHOUT NONZERO LINK PORTFOLIOS

As a preliminary step, we provide the existence of equilibrium in the case
that the economy E is free from nonzero link portfolios. That is, in this section
we suppose temporarily that L(Θ) = {0}. The preliminary result will be used to
verify the existence of equilibrium for the economy with nonzero link portfolios
in Section 5.

Theorem 3.2: Suppose that L(Θ) = {0}. Then economy E has an equilibrium
under Assumptions (A1)–(A6).

PROOF : See Appendix.

When L(Θ) 6= {0}, equilibrium may fail to exist as illustrated later in Sec-
tion 5. The following section present conditions which ensure the existence of
equilibrium in the presence of nonzero link portfolios.

3.3. ECONOMIES WITH LINK PORTFOLIOS

For a contingent-income vector ωi ∈ RS and a nonempty set A in RJ , we
define a set A(ωi) := {θ ∈ A : R · θ = ωi} = A∩{θ ∈ RJ : R · θ = ωi}. Then
the set Θi(ωi) consists of portfolios in Θi which yield the contingent incomes
ωi in period 1. The following provides a formal definition of contingent income
redistribution.
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Definition 3.2: A profile of contingent income vectors ω = (ω1,ω2, . . . ,ωI)

in (RS)I is called a contingent income redistribution (CIR) if ∑i∈I ωi = 0 and

∑i∈I Θi(ωi) 6= /0.

For a CIR ω = (ω1,ω2, . . . ,ωI), let θ be a point in ∑i∈I Θi(ωi). Then there
exists θi ∈ Θi for each i ∈ I such that R ·θi = ωi and θ = ∑i∈I θi. Since ∑i∈I R ·
θi = ∑i∈I ωi = 0, the set {R · θi : i ∈ I} forms a redistribution of contingent
incomes over agents that is attained by individually feasible portfolios. Thus,
aggregate feasible portfolios in ∑i∈I Θi(ωi) induce the CIR ω . Notice that the
CIR-inducing portfolio allocation (θ1, . . . ,θI) need not be market-clearing.10 We
impose the condition that the set of CIR-inducing aggregate feasible portfolios
be closed in the portfolio space.

(A7) For a CIR ω = (ω1,ω2, . . . ,ωI) in (RS)I , the following hold.

(i) (CCIR) ∑i∈I Θi(ωi) is closed in RJ , i.e., ∑i∈I Θi(ωi)= c`(∑i∈I Θi(ωi)).

(ii) L(Θ) = L (∑i∈I Θi(ωi)).

(iii) For each i ∈ I, ∑i∈I
(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
⊂ ∑i∈I Θi(ωi).

The first condition of Assumption (A7) is the CCIR condition discussed in
Introduction. The condition trivially holds when there is no nonzero link portfo-
lio, i.e., L(Θ) = {0}.11 The CCIR condition states that the limit of a convergent
sequence of aggregate feasible portfolios inducing the CIR ω is also an aggre-
gate feasible portfolio. The condition is a key condition of the paper and, to the
best of our knowledge, is new to the literature. Especially, the CCIR condition is
needed to build the fundamental theorem of portfolio decomposition by which
optimal portfolios are split into link components and income-determining com-
ponents. As demonstrated in Section 6, Assumption (A7) encompasses existing
conditions on portfolio constraints which are studied in the recent literature such
as Aouani and Cornet (2009, 2011) and Martins-da-Rocha and Triki (2005).

10Since R does not have full rank and a CIR ω requires ∑i R ·θi = ∑i ωi = 0, we have ∑i θi ∈
〈R〉⊥.

11This is a special case of (C2) discussed in Section 6.
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The conditions (ii) and (iii) of Assumption (A7) are a more or less technical
one which complements the CCIR condition to validate the fundamental theo-
rem of portfolio decomposition. The condition (ii) requires that the set of link
portfolios coincide with the maximal subspace of aggregate feasible portfolios
inducing each CIR. The condition (iii) is introduced to deal with the problem-
atic case where Θi’s are not closed in RJ . This condition is unnecessary if each
Θi is closed in RJ .

4. THE FUNDAMENTAL THEOREM OF PORTFOLIO
DECOMPOSITION

This section provides the fundamental theorem of portfolio decomposition
on which the main result of the paper are built in the next section. For each
ωi ∈ RS, we recall that Θi(ωi) = {θ ∈ Θi : R ·θ = ωi}, which is the orthogonal
projection of Θi(ωi) onto 〈R〉+M(Θ). This set does not contain nonzero link
portfolios and generates the same set of contingent incomes as Θi(ωi). A diffi-
culty with Θi(ωi) is that portfolios in Θi need not be feasible, i.e., Θi 6⊂ Θi and
moreover, Θi need not be closed. The fundamental theorem of portfolio decom-
position clarifies the relationship between Θi(ωi)’s and Θi(ωi)’s which plays a
key role in investigating the existence of equilibrium in the economy E .

The following result provides a way in which a portfolio allocation is or-
thogonally decomposed into the link portfolio and the allocation of income-
determining portfolios.

Proposition 4.1 (Fundamental Theorem of Portfolio Decomposition): Let
ω = (ω1,ω2, . . . ,ωI) be a CIR in (RS)I . Under Assumptions (A4) and (A7), the
following hold.

(1) ∑i∈I Θi(ωi) = L(Θ)+∑i∈I Θi(ωi).

(2) ∑i∈I Θi(ωi) is closed in RJ .

(3) ∑i∈I Θi(ωi) = ∑i∈I c`
(
Θi(ωi)

)
= ∑i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
.

(4) L
(
∑i∈I(Ci∩〈R〉⊥)

)
= {0}.
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PROOF : See Appendix.

Recall that each aggregate feasible portfolio in ∑i∈I Θi(ωi) induces the re-
distribution ω = (ω1, . . . ,ωI) of contingent incomes among agents. The first
result (1) of Proposition 4.1 states that each aggregate feasible portfolio induc-
ing the CIR ω under the portfolio constraints {Θi} is decomposed into the link
portfolio and the aggregate income-determining portfolio. The second result
(2) shows that Assumption (A7) ensures the closedness of ∑i∈I Θi(ωi) where
each Θi(ωi) need not be closed. The third result (3) shows that Θi(ωi) and
c`(Θi)∩{θ ∈ RJ : R · θ = ωi} are interchangeable at the aggregate level. The
last result is equivalent to the relation

L

(
∑
i∈I

(c`(Θi)∩〈R〉⊥)

)
= {0}.

Thus, it states that the set of portfolio constraints {c`(Θi), i ∈ I} has no nonzero
link portfolio. In the next section, the above result will provide a foothold for
verifying the existence of equilibrium for the economy E by exploiting the result
of Theorem 3.2.

5. MAIN RESULTS

This section verifies the existence of equilibrium for the economy E . To do
this, we introduce the projected economy E which is identical to the original
economy E except that Θi is replaced by c`(Θi) for each i ∈ I.12 A competitive
equilibrium of E can be defined in the same fashion as that of E . The projected
economy E shares the same equilibrium prices and consumption allocations
with the original economy E and is much easier to deal with than E because
nonzero link portfolios do not appear in the portfolio constraints of E . To discuss
the property of equilibrium prices, we introduce the set of normalized prices
∆ = ∆1×∆0 where

∆0 = {q ∈ Q : ‖q‖= 1} , ∆s =
{

p ∈ RL
++ : ∑

L
k=1 pk(s) = 1

}
, ∆1 = ∏s∈S∆s.

12The set c`(Θi) is taken as the portfolio constraint for agent i in E instead of Θi because Θi
need not be closed.
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The following result shows that both E and E have the same equilibrium out-
comes except for the possible presence of nonzero link components in optimal
portfolios for E . This result is exploited to verify the existence of equilibrium
for the economy E .

Proposition 5.1: The following hold true under Assumptions (A1)–(A7).

(i) If E has an equilibrium (p∗,q∗,x∗,θ
∗
) ∈ ∆×∏i∈I Xi×∏i∈I c`(Θi), then

there exists θ ∗ ∈ Θi for each i ∈ I such that (p∗,q∗,x∗,θ ∗) is an equilib-
rium of E .

(ii) If E has an equilibrium (p∗,q∗,x∗,θ ∗) ∈ ∆×∏i∈I Xi×∏i∈I Θi, then E

has an equilibrium (p∗,q∗,x∗,θ
∗
) where θ

∗
i is the projection of θ ∗i onto

〈R〉+M(Θ).

PROOF : See Appendix.

We already know from Theorem 3.1 that link portfolios are free in equilib-
rium of the economy E . Proposition 5.1 goes further by showing that both E and
E share the same equilibrium profiles except for the link portfolios in individual
optimal portfolios. This result is not intuitively obvious because each optimal
portfolio θ

∗
i in the projected economy E need not be feasible in the economy

E . The fundamental theorem of portfolio decomposition (Proposition 4.1) pro-
vides an answer to the linkage between equilibrium portfolio allocations in E

and E . By (1) and (3) of Proposition 4.1, there exists a link portfolio which
transforms the set of individual optimal portfolio θ

∗
i ’s in the projected economy

E into the feasible portfolios θ ∗i ’s in the economy E that yield the same con-
tingent incomes as θ

∗
i ’s. Since the link component of θ ∗i is free for each i ∈ I,

the equilibrium prices and optimal consumptions of E are kept in equilibrium
of the economy E . The same intuition can be exerted to show the validity of the
converse.

Theorem 3.2 combined with Proposition 5.1 leads to the existence of equi-
librium in the economy E with possibly nonzero link portfolios.
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Theorem 5.1: Under Assumptions (A1)–(A7), there exists an equilibrium in
the economy E .

PROOF : First, we want to apply Theorem 3.2 to the projected economy E . To
do this, we need to check that Assumptions (A1)–(A6) hold in E . Assumptions
(A1)–(A4) trivially holds in E . By Assumption (A5), we choose vi ∈Ci with R ·
vi > 0. Let vi denote the projection of vi onto 〈R〉+M(Θ). Then vi ∈ c`(Θi) and
R · vi = R · vi > 0. Thus, Assumption (A5) is fulfilled in E . Now by Assumption
(A6), for each q ∈ c`(Q) \ {0}, we choose ζi ∈ Θi such that q · ζi < 0. Let ζ i

denote the projection of ζi onto 〈R〉+M(Θ). By Theorem 3.1, we have q ·ζ i =

q · ζi < 0. That is, Assumption (A6) holds in E . Consequently, the economy
E satisfies Assumptions (A1)–(A6). On the other hand, by (4) of Proposition
4.1, E has no nonzero link portfolios. Then it follows from Theorem 3.2 that
the economy E has an equilibrium. This result combined with Proposition 5.1
ensures the existence of equilibrium in the economy E .

In fact, Theorem 5.1 is built on the following procedure.

Four-Step Procedure for the Existence of Equilibrium:

(S1) Verify the existence of equilibrium for a special economy where the port-
folio constraints admit no nonzero link portfolio.

(S2) Find conditions on the original portfolio constraints under which the fun-
damental theorem of portfolio decomposition holds.

(S3) Construct the artificial economy E where agent i faces the portfolio con-
straint c`(Θi) and check that the artificial economy is qualified as the spe-
cial economy mentioned in Step (S1).

(S4) Verify the existence of equilibrium for the original economy by checking
the allocational equivalence between the original economy and the artifi-
cial economy.

Let us check that our approach for verifying the result of Theorem 5.1 is
in conformity with the four-step procedure. Step (S1) is done in Theorem 3.2
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and Assumption (A7) is our choice in Step (S2). By (4) of Proposition 4.1, the
portfolio constraints admit no nonzero link portfolios in the artificial economy
E and thus, Step (S3) is fulfilled. Finally, Proposition 5.1 provides an answer to
Step (S4).

Step (S2) is the most critical one of the four-step procedure. Distinct ap-
proaches of the literature can be articulated in terms of the above procedure.
Specifically, the four-step procedure can be specialized in Martins-da-Rocha and
Triki (2005) and Aouani and Cornet (2011), which make distinct assumptions
on portfolio restrictions in Step (S2). As shown in the next section, the current
paper makes the most comprehensive assumption (Assumption (A7)) in the lit-
erature for Step (S2).

Finally, we provide an example in which the economy satisfies all the stan-
dard conditions but fails to have equilibrium only because the CCIR condition
is violated. The failure of the CCIR condition is attributed to the presence of a
nonzero link portfolio in the example.

Example 5.1: We consider a single good exchange economy with 2 agents, 4
assets, and 3 states. The single good is used as a numéraire. We assume that the
payoff matrix R is given as

R =

1 0 1 1
0 2 1 3
0 2 1 3

 .
Both agents have the same endowment of goods and distinct preferences.

u1(x) = x(1)+0.5x(2)+0.5x(3), e1 = (1,1,1),
u2(x) = x(1)+ x(2)+ x(3), e2 = (1,1,1).

We assume that

Θ1 = {(a,b,c,d) ∈ R4 : b≥−1/2, c≥−2b+1/(b+1)−4d−2},

Θ2 = {(a,b,c,d) ∈ R4 : b≤ 1, c≥−2b−3d−1, d ≥−2}.

Portfolio η = (2,1,−2,0) is a link portfolio of the economy since θ1+λη ∈
Θ1 for each θ1 ∈Θ1 and λ ≥ 0, and θ2 +λη ∈Θ2 for each θ2 ∈Θ1 and λ < 0.
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As shown in the appendix, the economy has no equilibrium because the link
portfolio prevents the set ∑

2
i=1 Θi(0) = (Θ1 ∩ 〈R〉⊥)+ (Θ2 ∩ 〈R〉⊥) from being

closed in R4, i.e., it causes the failure of the CCIR condition. Remarkably, each
Θi and the marketed income set Yi := {R ·θi : θi ∈Θi} are closed and moreover,
the aggregate income set Y1 +Y2 is closed, where Y1 = {(y1,y2,y2) ∈ R3 : y2 =

y3} and Y2 = {(y1,y2,y2)∈R3 : y2 = y3 and y3≥−1}. Such requirements do not
guarantee the existence of equilibrium in this example. An exhaustive analysis
of the example is relegated to Appendix.

Remark 5.1: The basic requirement that either Θi or Yi := {R · θi : θi ∈ Θi}
be closed for each i ∈ I is taken as a standard condition in the literature.13 As
shown in Example 5.1, however, such standard requirements are not sufficient
for the existence of equilibrium, especially when nonzero link portfolios exist.
Moreover, Example 5.1 illustrates that the additional requirement that the aggre-
gate marketed income set ∑i∈IYi be closed in RS may not be helpful in ensuring
the existence of equilibrium in constrained financial markets. Assumption (A7)
is introduced to capture the elusive behavior of link portfolios in equilibrium of
constrained financial markets through portfolio decomposition.

6. A COMPARATIVE REVIEW OF PORTFOLIO RESTRICTIONS

The following provides a collection of the restrictions the literature imposes
on portfolio constraints. Assumption (A7) turns out to be the most comprehen-
sive assumption that encompasses all the existing conditions of the literature.

(C1) For each i ∈ I, Ci∩〈R〉⊥ = {0}.

(C2) The collection {Ci∩〈R〉⊥ : i ∈ I} is positively semi-independent.14

(C3) Each Θi is a subspace of RJ .

(C4) If vi ∈Ci∩〈R〉⊥ for each i ∈ I and ∑i∈I vi = 0, then vi ∈ −Ci for all i ∈ I.

13The closedness of Yi’s in RS is assumed in the literature of asset pricing such as Luttmer
(1996) and Jouini and Kallal (1999).

14A set of cones {Ai : i∈ I} is positively semi-independent if vi ∈ Ai for all i∈ I and ∑i∈I vi = 0
imply that vi = 0 for all i ∈ I.
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(C5) Each Θi is a polyhedral convex set in RJ , i.e., for each i, there exist a
ki×J matrix Bi and a vector ai ∈Rki for some positive integer ki such that
Θi = {θ ∈ RJ : Bi ·θ ≤ ai}.

(C6) The set G =
{
(ω,v) ∈ (RS)I×RJ : v ∈ ∑i∈I Θi(ωi)

}
is closed.

(C7) Each Θi satisfies the following relations:

(C7-1) For any θ ∈ RJ , there exist i ∈ I and α > 0 such that R ·θi = αR ·θ
for some θi ∈Θi.15

(C7-2) (−∑i∈I Θi)∩〈R〉⊥ ⊂ ∑i∈I(Ci∩〈R〉⊥).

Condition (C6) is introduced in Aouani and Cornet (2011) while (C7) in
Martins-da-Rocha and Triki (2005) and Cornet and Gopalan (2010). Aouani and
Cornet (2011) show that (C1)–(C5) imply (C6). As illustrated below, however,
(C6) and (C7) do not imply each other. As depicted below in a diagram, (C7)
has the distinct property which is not shared with other portfolio conditions such
as (C4), (C5) and (C6). It is shown below that Assumption (A7) encompasses
both (C6) and (C7).

Condition (C1) is assumed in Siconolfi (1989). This condition is a special
case of (C2). Portfolio constraints are represented by a system of homogeneous
linear equations under the condition (C3) which is assumed in Balasko et al.

(1990). Condition (C4) subsumes (C2) and (C3) as a special case.16 Condition
(C5) is considered in Aouani and Cornet (2009). Clearly, (C3) is a special case of
(C5). Either (C4) or (C5) does not imply (C7),17 and (C7) does not imply either
(C4) or (C5).18 Since (C6) and (C7) implies Assumption (A7), it encompasses
all the conditions mentioned above.

15This condition is called locally collectively frictionless in Martins-da-Rocha and Triki
(2005).

16Notice that Θi =Ci = L (Θi) when Θi is a subspace.
17For example, suppose that I = J = 2, S = 1, R = [0 1], Θ1 = {(a,b) ∈R2 : a = b}, and Θ2 =
{(a,b) ∈R2 : a =−b}. Clearly, 〈R〉⊥ = {(a,b) ∈R2 : b = 0}. Then, (C4) and (C5) hold trivially.
But, (C7) does not hold because−(Θ1+Θ2)∩〈R〉⊥= 〈R〉⊥ and (C1∩〈R〉⊥)+(C2∩〈R〉⊥)= {0}.

18Suppose that I = J = 2, Θ1 = R2
+ ∪{(a,b) ∈ R2 : b ≥ a2}, Θ2 = R2, and 〈R〉⊥ = {(a,b) ∈

R2 : b = 0}. Then we have C1 = R2
+ and C2 = R2. Clearly, (C7) holds and (C4) does not hold.

Since Θ1 is not polyhedral, (C5) does not hold either.
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The following propositions show that both (C6) and (C7) imply Assumption
(A7).

Proposition 6.1: Condition (C6) implies Assumption (A7).

PROOF : See Appendix.

Proposition 6.2: Condition (C7) implies Assumption (A7).

PROOF : See Appendix.

The following corollary is immediate from Theorem 5.1 and the above dis-
cussions and propositions.

Corollary 6.1: Suppose that Assumptions (A1)–(A6) hold and (A7) is replaced
by one of the conditions (C1)–(C7). Then the economy E has an equilibrium.

We provide an example where (C7) holds but (C6) fails. Thus, (C7) does not
imply (C6). Moreover, by Proposition 6.2, Assumption (A7) is fulfilled in the
example and therefore the converse of Proposition 6.1 does not hold.

Example 6.1: We consider a single good exchange economy with 2 agents, 2
assets, and 1 state. We assume that the payoff matrix R = [1 0] and agents have
the portfolio choice set as follows:

Θ1 = {(a1,b1) ∈ R2 : b1 ≥−1+1/(1−a1),a1 < 1},

Θ2 = {(a2,b2) ∈ R2 : a2 ≥−1}.

We see that C1 = {(a1,b1) ∈R2 : a1 ≤ 0,b1 ≥ 0}, C2 = {(a2,b2) ∈R2 : a2 ≥ 0}
and L(Θ) = 〈R〉⊥ = {(a,b) ∈ R2 : a = 0}. Since 〈R〉⊥ ⊂ −Θ2 and 〈R〉⊥ ⊂C2 ,
it holds that

−(Θ1 +Θ2)∩〈R〉⊥ = 〈R〉⊥ = (C1∩〈R〉⊥)+(C1∩〈R〉⊥).

Thus, (C7-2) holds in the example. To check the validity of (C7-1), we pick any
θ = (a,b) ∈ R2 with R · θ = a. If a < 0, we can pick θ1 = (a,0) ∈ Θ1 which



GUANGSUG HAHN AND DONG CHUL WON 19

gives R ·θ1 = a. If a ≥ 0, we can pick θ2 = (a,0) ∈ Θ2 which gives R ·θ2 = a.
Thus, (C7-1) holds here as well. By Proposition 6.2, Assumption (A7) holds too.

However, (C6) fails here. To see this, we take a sequence {(ωn,vn)} where

θ
n = (θ n

1 ,θ
n
2 ) = ((1−1/n,n),(0,−n)) ∈Θ1(ω

n
1 )×Θ2(ω

n
2 ),

ω
n = (R ·θ n

1 , R ·θ n
2 ) = (1−1/n,0),

vn = θ
n
1 +θ

n
2 = (1−1/n,n)+(0,−n) = (1−1/n,0) ∈ ∑

2
i=1Θi(ω

n
i ).

Note that ωn→ ω∗ = (1,0) and vn→ v∗ = (1,0). As Θ1(1) = /0, it holds that

v∗ = (1,0) /∈
2

∑
i=1

Θi(ω
∗
i ) = Θ1(1)+Θ2(0).

Hence (C6) does not hold in this economy. Consequently, (C7) does not imply
(C6) and the converse of Proposition 6.1 is not true.

By using an arrow as the implicative direction, the relationship among (C1)–
(C7) and Assumption (A7) is summarized as follows.

(A7) � (C7)

(C1) - (C2) - (C4) - (C6)

6

(C3)

6

- (C5)

6

Figure 1. The Relationship between the Portfolio Restrictions.
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7. CONCLUSION

The paper has developed the four-step modular approach to study the effect
of portfolio constraints on the existence of equilibrium by building the two pil-
lars to deal with link portfolios. The two pillars are the fundamental theorem
of portfolio decomposition and the allocational equivalence between the origi-
nal economy and the artificial economy where each agent are restrained to make
portfolio choices in the closure of income-determining components of originally
feasible portfolios. The fundamental theorem of portfolio decomposition is built
on Assumption (A7) where the CCIR condition plays a pivotal role. Assumption
(A7) encompasses all the distinct restrictions on constrained portfolios which
appear in the literature.

Portfolio constraints arise from many sources of market frictions such as in-
stitutional imperfections, transaction costs, and informational asymmetry. The
property of link portfolios may be useful in studying the role of financial deriva-
tives from a perspective of alternative market frictions. Financial derivatives af-
fect individual welfare in frictional markets because they expand risk-sharing
opportunities. Thus, it will be an interesting research to analyze the welfare im-
plications of link portfolios in frictional markets. The result of the paper is po-
tentially applicable to the literature on information revelation. Since link portfo-
lios represent linear restrictions at the aggregate level, the fundamental theorem
of portfolio decomposition may contribute to the extension of Citanna and Vil-
lanacci (2000a,b) to the case of constrained financial markets.

APPENDIX

A.1. Proof of Theorem 3.1

Let (p,q,x,θ) be an equilibrium of E . Suppose that there exists η ∈ L(Θ)

with q ·η 6= 0. Since−η ∈ L(Θ), without loss of generality, we may assume that
q ·η < 0. For each λ > 0 and i ∈ I, we pick ηi(λ ) ∈Θi∩〈R〉⊥ such that λ 2η =

∑i∈I ηi(λ ). Since limλ→∞ λq ·η = limλ→∞ ∑i∈I q ·(ηi(λ )/λ ) =−∞, there exists
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i ∈ I such that limλ→∞ q · (ηi(λ )/λ ) = −∞. Without loss of generality, we will
assume that i = 1.

By Assumption (A5), let v1 be a point in C1 with R ·v1 > 0. Then there exists
δ > 0 in R` such that x1 +δ �1 x1 and p2(x1 +δ − e1)< R · (θ1 + v1). By the
continuity of �1, there exists λ1 > 1 such that for all λ > λ1,(

1− 1
λ

)
(x1 +δ )�1 x1.

It is obvious that for all λ > 1, p21
[(

1− 1
λ

)
(x1 +δ )− e1

]
< R · [

(
1− 1

λ

)
(θ1 +

v1)]. Since limλ→∞ q · [η1(λ )/λ ] =−∞, for all λ > λ2, there exists λ2 > 1 such
that q ·

[(
1− 1

λ

)
(θ1 + v1)+

1
λ

η1(λ )
]
< 0. Recalling that η1(λ )∈ 〈R〉⊥, we have

R ·
[(

1− 1
λ

)
(θ1 + v1)+

1
λ

η1(λ )

]
= R · [

(
1− 1

λ

)
(θ1 + v1)].

For all λ > max{λ1,λ2}, it follows that
(
1− 1

λ

)
(x1 +δ )�1 x1 and((

1− 1
λ

)
(x1 +δ ),

(
1− 1

λ

)
(θ1 + v1)+

1
λ

η1(λ )

)
∈ c`B1(p,q).

This contradicts the optimality of (x1,θ1) in c`B1(p,q). Thus, we conclude that
q ·η = 0 for all η ∈ L(Θ).

A.2. Proof of Theorem 3.2

We introduce a price set ∆̃ = ∆̃1× ∆̃0 where

∆̃0 =
{

q ∈ RJ : ‖q‖ ≤ 1
}
, ∆̃s = c`(∆s), ∆̃1 = ∏s∈S∆̃s.

Clearly, the set ∆̃ is nonempty, compact, and convex.
Let A := {x ∈∏i∈I Xi : ∑i∈I(xi− ei) = 0} and X̂i be the projection of A onto

Xi. Since each Xi is bounded from below, X̂i is compact for all i∈ I. Thus we can
consider a compact convex cube K⊂R` with center 0 such that ∑i∈I X̂i⊂ int(K).
Note that ∑i∈I ei ∈ int(K). Next we take an increasing sequence {Mn} in RJ of
compact convex cubes with center 0 such that 0 ∈ int(M1) and

⋃
n Mn = RJ .

For each i, let X̃i := Xi ∩K and Θn
i := Θi ∩Mn, and define a new preference

correspondence P̃i : X̃i→ 2X̃i by P̃i(xi) := Pi(xi)∩ X̃i.
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Consider the sequence of truncated economies {E n := 〈(X̃i, P̃i,ei,Θ
n
i )i∈I,R〉}.

In the economy E n, each agent i has a nonempty compact convex choice set
X̃i×Θn

i . Let us define agent i’s modified open budget correspondence Bn
i : ∆̃→

2X̃i×Θn
i in E n by

Bn
i (p,q) =

{
(xi,θi) ∈ X̃i×Θ

n
i : p2(xi− ei)�W (q) ·θi + γ(q)

}
,

where γ : ∆̃0→ RS+1 is given by

γs(q) =

{
1−‖q‖, if s = 0,
0, if s ∈ S.

Modified budget correspondence c`Bn
i : ∆̃→ 2X̃i×Θn

i is defined by c`Bn
i (p,q) :=

c`(Bn
i (p,q)). Observe that Assumptions (A3) and (A6) imply Bn

i (p,q) 6= /0 for
all i and n.

Now, we construct correspondences ϕn
0 : ∆̃×∏i∈I X̃i×∏i∈I Θn

i → 2∆ and
ϕn

i : ∆̃×∏i∈I X̃i×∏i∈I Θn
i → 2X̃i×Θn

i for every i ∈ I in the following way:

ϕ
n
0 (p,q,x,θ) = {(p′,q′) ∈ ∆̃ : ∑s∈S[p

′(s)− p(s)] ·∑i∈I[xi(s)− ei(s)]

+(q′−q) ·∑i∈Iθi > 0},

ϕ
n
i (p,q,x,θ) =

{
c`Bn

i (p,q), if (xi,θi) /∈ c`Bn
i (p,q),(

P̃i(xi)×Θn
i
)
∩Bn

i (p,q), if (xi,θi) ∈ c`Bn
i (p,q).

Then it is well known that following lemma holds.

Lemma A.1: Under Assumptions (A1)–(A7), ϕn
i is lower hemicontinuous with

convex values for every i ∈ {0}∪ I and for every n.

The existence of a competitive equilibrium is to be built on the following
fixed point theorem.

Lemma A.2 (Gale and Mas-Colell, 1975, 1979): Let Tk be a nonempty com-
pact convex subset of the finite dimensional Euclidean space and T = ∏k∈K Tk.
Let ϕk : T → 2Tk be lower hemicontinuous with convex values. Then there is
t∗ ∈ T such that t∗k ∈ ϕk(t∗) or ϕk(t∗) = /0 for every k.
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Lemma A.3: If Assumptions (A1)–(A7) are satisfied, for each n, there exists a
vector (pn,qn,xn,θ n) in ∆̃×∏i∈I X̃i×∏i∈I Θn

i such that

(1) (xn
i ,θ

n
i ) ∈ c`Bn

i (pn,qn), ∀ i ∈ I,

(2)
(
P̃i(xn

i )×Θn
i
)
∩Bn

i (pn,qn) = /0, ∀ i ∈ I,

(3) ∑s∈S[p(s)− pn(s)] · [∑i∈I(xn
i (s)−ei(s))]+(q−qn) ·∑i∈Iθ

n
i ≤ 0, ∀(p,q)∈

∆̃,

(4) ∑i∈I θ n
i = 0 and ∑i∈I xn

i ≤ ∑i∈I ei.

PROOF : By Lemma A.1 and Lemma A.2, there exists (pn,qn,xn,θ n) ∈ ∆̃×
∏i∈I X̃i×∏i∈I Θn

i which satisfies (1)–(3) for every i ∈ I.

To show (4), suppose that ∑i∈I θ n
i 6= 0. Then it follows from (3) that ‖qn‖=

1 and qn ·∑i∈I θ n
i > 0. However, by (1), we have qn ·∑i∈I θ n

i ≤ 0, which is
a contradiction. Thus ∑i∈I θ n

i = 0. By similar arguments, we can show that

∑i∈I(xn
i − ei)≤ 0.

PROOF OF THEOREM 3.2: Let {(pn,qn,xn,θ n)} denote the sequence obtained
in Lemma A.3.

CLAIM 1: The sequence {(pn,qn,xn,θ n)} has a subsequence convergent to a
point (p∗,q∗,x∗,θ ∗) ∈ ∆̃×∏i∈I Xi×∏i∈I Θi.

PROOF : It is obvious that the sequence {(pn,qn,xn)} is bounded. To show that
the sequence {θ n} is bounded, suppose to the contrary that it is unbounded,
implying an := (∑i∈I ‖θ n

i ‖)−1→ 0. Since {(pn,qn,xn,anθ n)} is bounded, with-
out loss of generality, we can assume that it converges to (p∗,q∗,x∗,v) with
vi ∈ Ci, ∀ i ∈ I. Since an[pn

2(xn
i − ei)] ≤W (qn) · (anθ n

i )+ anγ(qn), we obtain
W (q∗) · vi ≥ 0 in the limit for each i ∈ I. Observe that ∑i∈I ‖vi‖= 1 and that (4)
of Lemma A.3 implies that ∑i∈I vi = 0. Accordingly, it follows that W (q∗) ·vi = 0
and therefore vi ∈ 〈R〉⊥ for each i ∈ I. Since vi ∈ Ci ∩ 〈R〉⊥, we have vi ∈
∑ j∈I(C j ∩ 〈R〉⊥) for each i ∈ I. Moreover, vi = −∑ j 6=i v j ∈ −∑ j∈I(C j ∩ 〈R〉⊥)
and thus vi ∈ L(C), ∀ i ∈ I. By supposition, L(C) = {0} and thus vi = 0, ∀ i ∈ I,



24 EQUILIBRIUM IN CONSTRAINED FINANCIAL MARKETS

which is a contradiction. Hence {(pn,qn,xn,θ n)} is bounded, and therefore we
may assume that it converges to (p∗,q∗,x∗,θ ∗) ∈ ∆̃×∏i∈I Xi×∏i∈I Θi.

CLAIM 2: ‖q∗‖= 1.

PROOF : We will show that ‖qn‖= 1 for sufficiently large n. Let us take vi ∈Ci

with R · vi > 0 by Assumption (A5). Since xn
i ≤ ∑i∈I ei ∈ int(K) for every i and

every n, we can pick δ ∈ R`
+\{0} such that ∑i∈I ei + δ ∈ int(K) and pn

21δ <

R · vi, and thus pn
21(βδ ) < R · (βvi) for all β ∈ (0,1). Since pn

21ei � 0 by
Assumption (A3), it follows from (1) of Lemma A.3 that, for each α ∈ (0,1),
pn

21(αxn
i − ei)� R · (αθ n

i ). Given β ∈ (0,1), for α ∈ (0,1) sufficiently close
to 1, we obtain αxn

i +βδ �i xn
i and pn

21[αxn
i +βδ −ei]� R · [αθ n

i +βvi] with
αxn

i +βδ ∈ X̃i. Noting that θ n
i → θ ∗i , we have αθ n

i +βvi ∈ Θn
i for sufficiently

large n. Then (2) of Lemma A.3 implies that qn · [αθ n
i +βvi] ≥ γ0(qn). Passing

(α,β )→ (1,0) leads to qn ·θ n
i ≥ γ0(qn), with which (1) of Lemma A.3 implies

qn · θ n
i = γ0(qn). By (4) of Lemma A.3, summing this up over i ∈ I yields I ·

γ0(qn) = 0. Consequently, we have γ0(qn) = 0, i.e., ‖qn‖= 1 for every n, which
implies ‖q∗‖= 1.

We will show that (p∗,q∗,x∗,θ ∗) is an equilibrium for E .

CLAIM 3: The following hold.

(i) (x∗i ,θ
∗
i ) ∈ c`Bi(p∗,q∗), ∀ i ∈ I..

(ii) ∑s∈S[p(s)− p∗(s)] ·∑i∈I(x∗i (s)− ei(s))+(q−q∗) ·∑i∈I θ ∗i ≤ 0, ∀(p,q) ∈
∆̃.

(iii) ∑i∈I θ ∗i = 0.

(iv) x∗i ∈ Xi∩ int(K) for every i ∈ I.

(v) q∗ ∈ c`Q.

PROOF : The results (i)–(iii) are immediate from Lemma A.3, and Claims 1 and
2. To prove (iv), we recall that ∑i∈I ei ∈ int(K). By (4) of Lemma A.3 and Claim
1, we have x∗i ≤∑i∈I ei ∈ int(K), implying (iv). Now we turn to (v). Suppose that
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q∗ 6∈ c`Q. Then there exists an agent i with θi ∈Ci such that q∗ ·θi < 0 and R ·θi >

0.19 By (iv), we can choose δ ∈ R`
+\{0} such that x∗i + δ ∈ Xi ∩ int(K) and

p∗21δ < R ·θi. Then we see that x∗i +δ �i x∗i , q∗ ·(θ ∗i +θi)< 0, and p∗21(x∗i +

δ−ei)< R ·(θ ∗i +θi) with θ ∗i +θi ∈Θi. Since p∗21ei� 0 by Assumption (A3),
it holds that, for each α ∈ (0,1), p∗21[α(x∗i +δ )−ei]� R · [α(θ ∗i +θi)] and q∗ ·
[α(θ ∗i +θi)]< 0. Thus, for α sufficiently close to 1, we have α(x∗i +δ )�i x∗i and
p∗2 [α(x∗i +δ )−ei]�W (q∗) · [α(θ ∗i +θi)]. Consequently, for sufficiently large
n, it holds that α(xn

i +δ )�i xn
i and pn

2 [α(xn
i +δ )− ei]�W (qn) · [α(θ n

i +θi)]

with α(xn
i + δ ) ∈ X̃i and α(θ n

i + θi) ∈ Θn
i , which is a contradiction to (2) of

Lemma A.3. Hence (v) holds.

CLAIM 4: (p∗,q∗) ∈ ∆.

PROOF : First we will prove that p∗ ∈ ∆1. Suppose to the contrary that there
exists some s ∈ S such that p∗(s) ∈ c`∆s \∆s. By (iv) of Claim 3, we can choose
δ ∈ R`

+\{0} such that x∗i + δ ∈ Xi∩ int(K), p∗(s) · δ (s) = 0, and δ (s′) = 0 for
all s′ ∈ S\{s}. Then it follows that x∗i +δ �i x∗i and p∗2(x∗i +δ −ei)≤W (q∗) ·
θ ∗i . Since p∗21ei � 0 by Assumption (A3), it holds that, for each α ∈ (0,1),
p∗21(α(x∗i +δ )−ei)� R · (αθ ∗i ). By (v) of Claim 3 and Assumption (A6), we
have ζi ∈ Θi such that q∗ · ζi < 0. For each α ∈ (0,1), then, q∗ · [αθ ∗i + (1−
α)ζi]< 0. Consequently, for α ∈ (0,1) sufficiently close to 1, we obtain α(x∗i +

δ )�i x∗i , q∗ · [αθ ∗i +(1−α)ζi]< 0, and p∗21(α(x∗i +δ )−ei)� R · [αθ ∗i +(1−
α)ζi]. For sufficiently large n, we obtain α(xn

i +δ )�i xn
i and pn

2(α(xn
i +δ )−

ei)�W (qn) · [αθ n
i +(1−α)ζi] with α(xn

i +δ ) ∈ X̃i and αθ n
i +(1−α)ζi ∈Θn

i .
This is a contradiction to (2) of Lemma A.3, and therefore p∗ ∈ ∆1.

To show that q∗ ∈ Q, suppose otherwise. By definition of Q, there exists an
agent i with θi ∈Ci such that q∗ ·θi ≤ 0 and R ·θi > 0. By (iv) of Claim 3, we
can choose δ ∈R`

+\{0} such that x∗i +δ ∈ Xi∩ int(K) and p∗21δ < R ·θi. Thus
x∗i +δ �i x∗i , q∗ · (θ ∗i +θi)≤ 0, and p∗21(x∗i +δ −ei)< R · (θ ∗i +θi) with θ ∗i +

θi ∈Θi. Since p∗21ei� 0 by Assumption (A3), it holds that, for each α ∈ (0,1),
p∗21(α(x∗i + δ )− ei)� R · [α(θ ∗i + θi)]. By (v) of Claim 3 and Assumption
(A6), we find ζi ∈Θi such that q∗ ·ζi < 0. For each α ∈ (0,1), then, q∗ · [α(θ ∗i +

19It is supposed here that L(C) = {0}. Thus, we have Ci =Ci for each i ∈ I.
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θi) + (1−α)ζi] < 0. Consequently, for α ∈ (0,1) sufficiently close to 1, we
obtain α(x∗i +δ )�i x∗i , q∗ · [α(θ ∗i +θi)+(1−α)ζi]< 0, and p∗21[α(x∗i +δ )−
ei]�R · [α(θ ∗i +θi)+(1−α)ζi]. For sufficiently large n, we obtain α(xn

i +δ )�i

xn
i and pn

2(α(xn
i +δ )−ei)�W (qn) · [α(θ n

i +θi)+(1−α)ζi] with α(xn
i +δ )∈

X̃i and α(θ n
i +θi)+(1−α)ζi ∈Θn

i . This is a contradiction to (2) of Lemma A.3,
and therefore q∗ ∈ Q.

CLAIM 5: (Pi(x∗i )×Θi)∩Bi(p∗,q∗) = /0, ∀ i ∈ I.

PROOF : Suppose otherwise. Then there exists an agent i with a choice (xi,θi) ∈
Xi×Θi such that xi�i x∗i and p∗2(xi−ei)�W (q∗) ·θi. Since βxi+(1−β )x∗i �i

x∗i for all β ∈ (0,1), without loss of generality, we can take xi sufficiently close
to x∗i such that xi ∈ int(K). By (i) and (iv) of Claim 3, it holds that, for α ∈ (0,1)
sufficiently close to 1, αxi +(1−α)x∗i ∈ Xi∩ int(K), αxi +(1−α)x∗i �i x∗i , and
p∗2 [αxi + (1−α)x∗i − ei]�W (q∗) · [αθi + (1−α)θ ∗i ]. Then for sufficiently
large n, we have αxi+(1−α)xn

i �i xn
i and pn

2 [αxi+(1−α)xn
i −ei]�W (qn) ·

[αθi +(1−α)θ n
i ] with αxi +(1−α)xn

i ∈ X̃i and αθi +(1−α)θ n
i ∈ Θn

i , which
is a contradiction to (2) of Lemma A.3. Hence the claim holds.

CLAIM 6: (Pi(x∗i )×Θi)∩ c`Bi(p∗,q∗) = /0, ∀ i ∈ I.

PROOF : Suppose otherwise. Then there exists an agent i with a choice (xi,θi) ∈
Xi×Θi such that xi �i x∗i and p∗2(xi− ei) ≤W (q∗) · θi. Since p∗21ei � 0 by
Assumption (A3), it holds that, for each α ∈ (0,1), p∗21(αxi− ei)� R · (αθi).
Moreover, by (v) of Claim 3 and Assumption (A6), we can take ζi ∈ Θi such
that q∗ · ζi < 0. For α ∈ (0,1) sufficiently close to 1, we have αxi �i x∗i , q∗ ·
(αθi +(1−α)ζi) < 0, and p∗21(αxi− ei)� R · (αθi +(1−α)ζi). This leads
to a contradiction to Claim 5. Hence the claim holds.

CLAIM 7: ∑i∈I(x∗i − ei) = 0.

PROOF : Observe that (i) of Claim 3 and Claim 6 with Assumption (A2) im-
ply p∗21(x∗i −ei) = R ·θ ∗i , ∀ i∈ I. By (iii) of Claim 3, we obtain p∗21 ∑i∈I(x∗i −
ei) = 0. On the other hand, it follows from (ii) of Claim 3 that p(s) ·∑i∈I(x∗i (s)−
ei(s)) ≤ p∗(s) ·∑i∈I(x∗i (s)− ei(s)), ∀s ∈ S, ∀ p ∈ ∆̃1, leading to ∑i∈I(x∗i (s)−
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ei(s))≤ 0, ∀s ∈ S. Since p∗� 0 by Claim 4, we have ∑i∈I(x∗i − ei) = 0.

Hence the point (p∗,q∗,x∗,θ ∗)∈∆×∏i∈I Xi×∏i∈I Θi is a competitive equi-
librium of economy E .

A.3. Proof of Proposition 4.1

(1) By the definition of the orthogonal projection, it holds that Θi(ωi)⊂ L(Θ)+

Θi(ωi) for every i ∈ I and thus ∑i∈I Θi(ωi) ⊂ L(Θ) + ∑i∈I Θi(ωi). To prove
the converse inclusion, take any θ ∈ L(Θ)+∑i∈I Θi(ωi). Then there exist η ∈
L(Θ) and θ i ∈ Θi(ωi) for each i ∈ I such that θ = η + ∑i∈I θ i. We choose
ηi ∈ L(Θ) such that θ i + ηi ∈ Θi(ωi). By (ii) of Assumption (A7), we have
L(Θ)+∑i∈I Θi(ωi)⊂ ∑i∈I Θi(ωi). Then it follows that

θ = η +∑
i∈I

θ i =

(
η−∑

i∈I
ηi

)
+∑

i∈I
(θ i +ηi) ∈ L(Θ)+∑

i∈I
Θi(ωi)⊂∑

i∈I
Θi(ωi),

which implies that L(Θ)+∑i∈I Θi(ωi)⊂∑i∈I Θi(ωi). Consequently, it holds that

∑
i∈I

Θi(ωi) = L(Θ)+∑
i∈I

Θi(ωi). (A.1)

It is worth noting that the relation (A.1) is built on (ii) of Assumption (A7).

(2) We choose a sequence {vn} in ∑i∈I Θi(ωi) which converges to a nonzero
point v ∈ 〈R〉+M(Θ). The result (A.1) implies that {vn} is in ∑i∈I Θi(ωi). Not-
ing that ∑i∈I Θi(ωi) is closed (by (i) Assumption (A7)), we see that v is in

∑i∈I Θi(ωi) and therefore in L(Θ)+∑i∈I Θi(ωi). Since (〈R〉+M(Θ))∩L(Θ) =

{0}, it follows that v is in ∑i∈I Θi(ωi). Thus, the set ∑i∈I Θi(ωi) is closed.

(3) Clearly, ∑i∈I Θi(ωi)⊂∑i∈I c`(Θi(ωi)). To prove the converse inclusion,
take any θ ∈ ∑i∈I c`(Θi(ωi)). Then there exists θi ∈ c`(Θi(ωi)) for each i ∈ I

such that θ = ∑i∈I θi. We pick a sequence {θ n
i } in Θi(ωi) which converges to

θi. Since ∑i∈I Θi(ωi) is closed and ∑i∈I θ n
i ∈ ∑i∈I Θi(ωi) for each n, the port-

folio θ is in ∑i∈I Θi(ωi). Thus, it follows that ∑i∈I c`(Θi(ωi)) ⊂ ∑i∈I Θi(ωi).
Consequently, it holds that ∑i∈I c`(Θi(ωi)) = ∑i∈I Θi(ωi).



28 EQUILIBRIUM IN CONSTRAINED FINANCIAL MARKETS

The result (A.1) combined with (iii) of Assumption (A7) leads to

∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
⊂∑

i∈I
Θi(ωi) = L(Θ)+∑

i∈I
c`(Θi(ωi)).

Since Θi ⊂ 〈R〉+M(Θ) and L(Θ)∩ (〈R〉+M(Θ)) = {0}, it yields

∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
⊂∑

i∈I
c`(Θi(ωi)).

Noting that c`(Θi(ωi))⊂ c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}, we obtain

∑
i∈I

c`(Θi(ωi))⊂∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
.

Thus, we see that

∑
i∈I

c`(Θi(ωi)) = ∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
. (A.2)

Hence the claim is proved.

(4) Noting that ∑i∈I Θi(ωi)=L(Θ)+∑i∈I c`
(
Θi(ωi)

)
and ∑i∈I c`

(
Θi(ωi)

)
⊂

〈R〉+M(Θ), by (ii) of Assumption (A7), we have

L

(
∑
i∈I

c`
(
Θi(ωi)

))
= {0}. (A.3)

Then Corollary 9.1.1 of Rockafellar (1970) implies

K

(
∑
i∈I

c`
(
Θi(ωi)

))
= ∑

i∈I
K
(
c`
(
Θi(ωi)

))
. (A.4)

By the relations (A.2) and (A.4), we see that

∑
i∈I

(
Ci∩〈R〉⊥

)
⊂K

(
∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

))
=∑

i∈I
K
(
c`
(
Θi(ωi)

))
.

Recalling that K
(
c`
(
Θi(ωi)

))
⊂ Ci ∩ 〈R〉⊥, we have ∑i∈IK

(
c`
(
Θi(ωi)

))
⊂

∑i∈I
(
Ci∩〈R〉⊥

)
. Consequently, it holds that

∑
i∈I

(
Ci∩〈R〉⊥

)
= ∑

i∈I
K
(
c`
(
Θi(ωi)

))
. (A.5)
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It follows from (A.3), (A.4), and (A.5) that(
∑
i∈I

(
Ci∩〈R〉⊥

))
∩

(
−∑

i∈I

(
Ci∩〈R〉⊥

))
= {0},

which yields L
(
∑i∈I

(
Ci∩〈R〉⊥

))
= {0}.

A.4. Proof of Proposition 5.1

(i) The main step of the proof is to find a market-clearing set of optimal
portfolios in E for all i which generate the same income transfers as θ

∗
i ∈ c`(Θi).

Recall that for each ωi ∈ RS, Θi(ωi) = Θi∩{θ ∈ RJ : R ·θ = ωi} and Θi(ωi) =

Θi ∩{θ ∈ RJ : R · θ = ωi}. Putting ωi = R · θ ∗i , by (3) of Proposition 4.1, we
have

∑
i∈I

c`(Θi(R ·θ
∗
i )) = ∑

i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = R ·θ ∗i }

)
.

Clearly, θ
∗
i is in c`(Θi)∩{θ ∈RJ : R ·θ = R ·θ ∗i } for each i∈ I. Since ∑i∈I θ

∗
i =

0, we have 0 ∈ ∑i∈I c`(Θi(R ·θ
∗
i )). Then by (1) and (3) of Proposition 4.1, this

implies that 0 ∈ ∑i∈I Θi(R · θ
∗
i ). Thus, there exists θ ∗i ∈ Θi such that R · θ ∗i =

R ·θ ∗i for all i ∈ I and ∑i∈I θ ∗i = 0.
Now we show that q∗ ·θ ∗i = 0 for all i ∈ I. Let θ i denote the projection of θ ∗i

onto 〈R〉+M(Θ). First, we claim that q∗ ·θ i ≥ 0 for all i∈ I. Suppose otherwise.
Then there exists i ∈ I such that q∗ · θ i < 0. By Assumption (A5), take vi ∈ Ci

such that R · vi = R · vi > 0, where vi be the projection of vi onto 〈R〉+M(Θ).
Then vi belongs to the projection of Ci onto 〈R〉+M(Θ), implying that vi ∈Ci.
We choose a sufficiently small number β > 0 such that q∗ ·θ i + q∗ · (βvi) < 0.
Then there exists a vector δ ∈ R`

+\{0} which satisfies p∗21δ < R · (βvi) and
x∗i +δ �i x∗i . Note that Assumption (A3) implies that p21ei� 0 and therefore,
for each α ∈ (0,1), we have p∗21(αx∗i − ei)� R · (αθ̄i). Now we can choose a
number α ∈ (0,1) sufficiently close to 1 such that αx∗i +δ �i x∗i and

0 < −q∗ · (αθ i +βvi),

p∗21(αx∗i +δ − ei) � R · (αθ i +βvi).
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Recalling that vi ∈Ci, we have αθ i+βvi ∈ c`(Θi). This leads to a contradiction
to the optimality of (x∗i ,θ

∗
i ) at (p∗,q∗) in economy E . Hence, we have q∗ ·θ i ≥ 0

for all i ∈ I.

Since ∑i∈I θ ∗i = 0 yields ∑i∈I θ i = 0, we see that q∗ · θ i ≥ 0 for all i ∈ I

implies q∗ · θ i = 0 for all i ∈ I. Recalling that q ∈ Q ⊂ 〈R〉+M(Θ), we have
q ·θ ∗i = q∗ ·θ i = 0 for all i∈ I. Hence (p∗,q∗,x∗,θ ∗) is an equilibrium of E .

(ii) We decompose the portfolio θ ∗i ∈Θi as θ ∗i = θ
∗
i + θ̃ ∗i where θ

∗
i ∈Θi and

θ̃ ∗i ∈ L(Θ). It is obvious that ∑i∈I θ
∗
i = 0. Since q∗ ∈ Q⊂ 〈R〉+M(Θ), we have

W (q∗) ·θ ∗i =W (q∗) ·θ ∗i for each i ∈ I.

It suffices to show that (x∗i ,θ
∗
i ) is optimal at (p∗,q∗) for each i ∈ I in econ-

omy E . Suppose otherwise. Then there exists (xi,ψi) ∈ Xi× c`(Θi) for some
i ∈ I such that p∗2(xi− ei) ≤W (q∗) ·ψi and xi �i x∗i . By Assumption (A3),
p∗2ei� 0. Now we can choose α ∈ (0,1) such that αxi �i x∗i , q∗ · (αψi) ≤ 0,
and p∗21(αxi− ei)� R · (αψi). Since q∗ ∈ Q admits ζi in Θi with q∗ · ζi < 0,
there exists β ∈ (0,1) such that q∗ · (βαψi +(1− β )ζi) < 0 and p∗21(αxi−
ei)� R · (βαψi +(1−β )ζi).

Recalling that ψi ∈ c`(Θi), we can pick {ψn
i } in Θi converging to ψi. We

choose ηn
i ∈ L(Θ) for each n such that ψn

i +ηn
i ∈ Θi. Then we have R · (ψn

i +

ηn
i )→ R ·ψi and q∗ · (ψn

i +ηn
i )→ q∗ ·ψi. It follows that, for sufficiently large

n, βα(ψn
i + ηn

i ) + (1− β )ζi ∈ Θi, q∗ · [βα(ψn
i + ηn

i ) + (1− β )ζi] < 0, and
p∗21(αxi− ei)� R · [βα(ψn

i + ηn
i ) + (1− β )ζi]. In short, αxi �i x∗i and for

sufficiently large n, (αxi,βα(ψn
i +ηn

i )+ (1−β )ζi) ∈ c`Bi(p∗,q∗) which con-
tradicts the optimality of (x∗i ,θ

∗
i ) at (p∗,q∗) in economy E . Thus, (p∗,q∗,x∗,θ

∗
)

is an equilibrium of the economy E .

A.5. Follow-up Analysis of Example 5.1

We show that the economy has no constrained Pareto optimal allocations
and thus no equilibrium only because link portfolios lead to the failure of the
CCIR condition.20 It is easy to check Assumptions (A1)–(A4) and (A5) hold.

20It is well-known that equilibrium is constrained Pareto optimal in a two-period one-good
economy.
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Since 0 ∈ int(Θi) for i = 1,2, Assumption (A6) holds as well.
However, the CCIR condition of Assumption (A7) does not hold in the ex-

ample. Specifically, we show that ∑
2
i=1 Θi(0) = (Θ1∩〈R〉⊥)+(Θ2∩〈R〉⊥) is not

closed in R4. Since 〈R〉⊥ = {θ ∈R4 : R ·θ = 0}= {(a,b,c,d)∈R4 : a = c = 0},
it holds that, for all i = 1,2,

Θ1∩〈R〉⊥ = {(a,b,c,d) ∈ R4 : a = 2(b+d), b≥−1/2, c =−2b−3d,

1/(b+1)−2−d ≤ 0},

Θ2∩〈R〉⊥ = {(a,b,c,d) ∈ R4 : a = 2(b+d), b≤ 1, c =−2b−3d, d ≥−2}.

We choose θ n
1 = (2(−3+ n+ 1/n),n− 1,8− 2n− 3/n,−2+ 1/n) ∈ Θ1(0) =

Θ1 ∩〈R〉⊥ and θ n
2 = (−2(1+ n),1− n,2(2+ n),−2) ∈ Θ2(0) = Θ2 ∩〈R〉⊥ for

each n. We set θ n = θ n
1 +θ n

2 = (−8+2/n,0,12−3/n,−4+1/n) ∈ ∑
2
i=1 Θi(0)

for each n. Then the sequence {θ n} converges to θ ≡ (−8,0,12,−4). Suppose
that θ ∈ ∑

2
i=1 Θi(0). Then there exist θ1 = (a1,b1,c1,d1) ∈ Θ1∩〈R〉⊥ and θ2 =

(a2,b2,c2,d2)∈Θ2∩〈R〉⊥ such that θ = θ1+θ2. We see that b1≥−1/2, b2≤ 1,
b1+b2 = 0, and 1/(b1+1)≤ 0. These relations, however, are self-contradictory
because the last inequality implies b1 <−1. Thus, we have θ 6∈ ∑

2
i=1 Θi(0), i.e.,

∑
2
i=1 Θi(0) is not closed. Consequently, the CCIR condition is violated in this

example.
Now we show that the economy has no equilibrium. We define functions f1

and f2 such that

f1(a,b,c,d) = (b+1/2,c+2b+4d +2−1/(b+1),

f2(a,b,c,d) = (1−b,c+2b+3d +1,d +2)

and introduce an invertible matrix

D =


1 0 1 1
0 1 0 0
0 2 1 3
0 0 0 1

 .
For each i = 1,2, it holds that θi ∈ Θi if and only if fi(θi) ≥ 0. We build an
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artificial economy Ẽ = 〈(Xi,Θ̃i,ui,ei)i∈{1,2}, R̃〉 where

R̃ = RD−1 =

1 0 0 0
0 0 1 0
0 0 1 0


and

Θ̃1 = {θ1 ∈ R4 : f1(D−1 ·θ)≥ 0}

= {(a,b,c,d) ∈ R4 : b≥−1/2, c≥ 1/(b+1)−2−d},

Θ̃2 = {θ2 ∈ R4 : f2(D−1 ·θ)≥ 0}= {(a,b,c,d) ∈ R4 : b≤ 1, c≥−1, d ≥−2}.

The economy Ẽ results from transforming E via the matrix D to produce the
simpler payoff matrix R̃ and portfolio constraints Θ̃i’s. Then E has an equilib-
rium (q,x,θ) if and only if Ẽ has an equilibrium (q̃,x, θ̃) where q̃ = q ·D−1

and θ̃i = D · θi for each i = 1,2. What need to be done is to show that Ẽ has
no equilibrium. Indeed, there are no constrained Pareto optimal allocations in
the economy Ẽ . To see this, we introduce function ûi : Θ̃i→ R for each i = 1,2
such that û1(θ1) = a1 + c1 and û2(θ2) = a2 + 2c2 where θi = (ai,bi,ci,di) for
each i = 1,2. The function ûi is the reduced-form utility function derived from
plugging the budget equations of the second period into ui for each i = 1,2. We
define the set

U = {(µ1,µ2) ∈ R2 : 0≤ µi ≤ ûi(θi) for some θi ∈ Θ̃i with θ1 +θ2 = 0}.

The set U is the utility set of attainable and individually rational allocations for
the economy Ẽ where agent i has the utility function ûi on Θ̃i with the initial
endowment 0 ∈ R4 for each i = 1,2. It is easy to check that

U = {(µ1,µ2) ∈ R2 : µ1 ≥ 0,µ2 ≥ 0,µ1 +µ2 < 4}.

That is, U is open in R2
+ and thus the economy Ẽ admits no constrained Pareto

optimal allocations. Consequently, there exists no equilibrium of the economy
Ẽ .
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A.6. Proofs of Propositions 6.1 and 6.2

PROOF OF PROPOSITION 6.1: Let ω be a CIR. We take a sequence {vn}
in ∑i Θi(ωi) converging to v. For each n, there exists θ n

i ∈ Θi(ωi) such that
vn = ∑i θ n

i . Now take a sequence {ωn} with ωn = ω and observe that vn ∈
∑i Θi(ω

n
i ) = ∑i Θi(ωi). By condition (C6), we have v ∈ ∑i Θi(ωi) and thus,

∑i∈I Θi(ωi) is closed. Hence the CCIR condition (i) of Assumption (A7)) holds.
It is shown below that (C6) implies (ii) and (iii) of Assumption (A7).

CLAIM 6.1A: (C6) implies (ii) of Assumption (A7), i.e.,

L(Θ) = L

(
∑
i∈I

Θi(ωi)

)
.

PROOF : We choose a point θi in Θi(ωi) for each i and v in L (∑i∈I Θi(ωi)).
By definition, nv+∑i∈I θi ∈ ∑i∈I Θi(ωi) for each n. Thus, for each i ∈ I, there
exists θ n

i ∈ Θi with R · θ n
i = ωi which satisfies nv+∑i∈I θi = ∑i∈I θ n

i . It holds
that R · (θ n

i /n) = ωi/n and θ n
i /n ∈Θi. This implies that for each n,(

ω1

n
, . . . ,

ωI

n
,v+

∑i∈I θi

n

)
∈ G.

In the limit, (0, . . . ,0,v) ∈ G because G is closed. Let λ be any real number. By
applying the same arguments to λv, we can show that (0, . . . ,0,λv) ∈ G. This
implies that v ∈ L(Θ) and thus, L (∑i∈I Θi(ωi))⊂ L(Θ).

To show the converse, we choose a point v ∈ L(Θ). For each n and i ∈ I,
there exists θ n

i ∈ Θi with R ·θ n
i = 0 which satisfies nv = ∑i∈I θ n

i . Recalling that
θi ∈Θi with R ·θi = ωi for each i, we see that

R ·
(

1
n

θ
n
i +
(

1− 1
n

)
θi

)
=
(

1− 1
n

)
ωi and

1
n

θ
n
i +
(

1− 1
n

)
θi ∈Θi.

Thus, it holds that for each n,((
1− 1

n

)
ω1, . . . ,

(
1− 1

n

)
ωI,v+

(
1− 1

n

)
∑
i∈I

θi

)
∈ G.

In the limit, (ω1, . . . ,ωI,v+∑i∈I θi) is in G. By applying the same arguments
to λv for any λ ∈ R, we obtain (ω1, . . . ,ωI,λv+∑i∈I θi) ∈ G. Hence, v is in
L (∑i∈I Θi(ωi)) and thus, L (∑i∈I Θi(ωi))⊂ L(Θ).
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To verify that (C6) implies (iii) of Assumption (A7), we make the following
claim.

CLAIM 6.1B: Condition (C6) implies the relation

∑
i∈I

Θi(ωi) = L(Θ)+∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
. (A.8)

PROOF : By Claim 6.1A, the first result of Proposition 4.1 holds here, i.e.,

∑i∈I Θi(ωi) = L(Θ)+∑i∈I Θi(ωi). Thus (C6) allows us to have

∑
i∈I

Θi(ωi)⊂ L(Θ)+∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
.

To show the converse, we choose a point v in the set of the right-hand side
of (A.8). There eixsts η ∈ L(Θ) and vi ∈ c`(Θi)∩{θ ∈RJ : R ·θ = ωi} for each
i ∈ I which satisfies v = η +∑i∈I vi. Let vn

i and ωn
i be a point in Θi and RS with

R · vn
i = ωn

i which converge to vi and ωi, respectively. We pick ηn
i in L(Θ) such

that vn
i +ηn

i ∈Θi(ω
n
i ) for each n and i ∈ I. It follows that

∑
i∈I

vn
i = ∑

i∈I
(vn

i +η
n
i )−∑

i∈I
η

n
i ∈∑

i∈I
Θi(ωi)+L(Θ)⊂∑

i∈I
Θi(ω

n
i )

This implies that (ωn
1 , . . . ,ω

n
I ,∑i∈I vn

i ) ∈ G. As G is closed, (ω1, . . . ,ωI,v) is in
G and thus, v ∈ ∑i∈I Θi(ωi). Therefore, it holds that

L(Θ)+∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
⊂∑

i∈I
Θi(ωi).

Relation (A.8) yields

∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
⊂∑

i∈I
Θi(ωi).

Thus (iii) of Assumption (A7) holds. Consequently, (C6) implies Assumption
(A7).

PROOF OF PROPOSITION 6.2: Let ω denote a CIR. First, we show that (C7)
implies (i) and (ii) of Assumption (A7).
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CLAIM 6.2A: Condition (C7-2) implies that

L(C) = L(Θ) = ∑
i∈I

(Θi∩〈R〉⊥) =

(
∑
i∈I

Θi

)
∩〈R〉⊥. (A.9)

PROOF : Since Θi⊂∑i∈I Θi, we see that−(Θi∩〈R〉⊥)⊂ (−∑i∈I Θi)∩〈R〉⊥, ∀ i∈
I. Then condition (C7-2) implies that −(Θi∩〈R〉⊥) ⊂ ∑i∈I(Ci∩〈R〉⊥), ∀ i ∈ I.
Since ∑i∈I(Ci∩〈R〉⊥) is a convex cone, it holds that

−∑
i∈I

(
Θi∩〈R〉⊥

)
⊂∑

i∈I
(Ci∩〈R〉⊥)⊂∑

i∈I
(Θi∩〈R〉⊥).

This result implies that ∑i∈I(Θi ∩ 〈R〉⊥) is a subspace of RJ and thus L(C) =

L(Θ) = ∑i∈I(Θi∩〈R〉⊥). Then the last equality of (A.9) is immediate from (C7-
2).

CLAIM 6.2B: It holds that

L(Θ) = L

(
∑
i∈I

Θi(ωi)

)
= ∑

i∈I
Θi(ωi). (A.10)

PROOF : By definition, ∑i∈I Θi(ωi) is in ∑i∈I Θi. Since ω is a CIR, ∑i∈I Θi(ωi) is
also in 〈R〉⊥. These results yield ∑i∈I Θi(ωi)⊂ (∑i∈I Θi)∩〈R〉⊥. Then by (A.9),
we obtain ∑i∈I Θi(ωi) ⊂ L(C). Now we recall that Ci ∩ 〈R〉⊥ = K(Θi(ωi)) for
each i ∈ I. Then we see that (Ci∩〈R〉⊥)+{θi} ⊂ Θi(ωi) for some θi ∈ Θi(ωi).
It follows that

L(C)+
{

∑
i∈I

θi

}
⊂∑

i∈I
(Ci∩〈R〉⊥)+

{
∑
i∈I

θi

}
⊂∑

i∈I
Θi(ωi)⊂ L(C).

This result combined with (A.9) yields L(Θ) = L(C) = ∑i∈I Θi(ωi). By tak-
ing the lineality space operator L on the above relation, we obtain L(C) =

L (∑i∈I Θi(ωi)). This result yields L(Θ) = L (∑i∈I Θi(ωi)) = ∑i∈I Θi(ωi).

By (A.10), ∑i∈I Θi(ωi) is closed. Hence condition (C7) implies (i) and (ii)

of Assumption (A7).

CLAIM 6.2C: It holds that 0 ∈ ∑i∈I
(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
.
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PROOF : Since L(Θ)⊂ ∑i∈I Θi(ωi) by (A.10), the first result of Proposition 4.1
holds here, i.e., ∑i∈I Θi(ωi) = L(Θ) +∑i∈I Θi(ωi). This result combined with
(A.10) leads to

L(Θ) = ∑
i∈I

Θi(ωi) = L(Θ)+∑
i∈I

Θi(ωi).

In particular, it means that ∑i∈I Θi(ωi) ⊂ L(Θ). Recalling that ∑i∈I Θi(ωi) ⊂
〈R〉+M(Θ), we have ∑i∈I Θi(ωi) = {0}. Thus it holds that

{0}= ∑
i∈I

Θi(ωi)⊂∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
.

CLAIM 6.2D: (C7-1) implies that ri(∑i Θi)∩〈R〉⊥ 6= /0.

PROOF : Suppose that ri(∑i Θi)∩ 〈R〉⊥ = /0. By Theorem 11.3 of Rockafellar
(1970), there exists a nonzero π ∈ RJ such that for each θ ∈ ri(∑i Θi) and η ∈
〈R〉⊥,

π ·θ > π ·η .

The relation gives π ·θ ≥ 0 for each θ ∈ ∑i Θi and π ∈ 〈R〉. The latter implies
there exists λ ∈ RJ\{0} such that π = λR. Then there exists s ∈ S such that
π · r(s) 6= 0. Without loss of generality, we assume that π · r(s) > 0. By (C7-1),
there exist α+ > 0 and θ

+
i ∈ Θi for some i ∈ I such that R · θ+

i = α+R · r(s).
Similarly, there exist α− > 0 and θ

−
i ∈ Θi for some i ∈ I such that R · θ−i =

α−R · (−r(s)). It follows that

λR ·θ+
i = π ·θ+

i = α
+

π · r(s),

λR ·θ−i = π ·θ−i =−α
−

π · r(s).

The relations show that π ·θ+
i and π ·θ−i must have different signs. On the other

hand, θ
+
i and θ

−
i are in ∑i Θi. This implies that π ·θ+

i ≥ 0 and π ·θ−i ≥ 0, which
is impossible. Therefore we conclude that ri(∑i Θi)∩〈R〉⊥ 6= /0.

We are ready to show that condition (C7) implies (iii) of Assumption (A7).
By Claim 6.2D and Corollary 6.5.1 of Rockafellar (1970), we see that

c`

((
∑
i∈I

Θi

)
∩〈R〉⊥

)
= c`

(
∑
i∈I

Θi

)
∩〈R〉⊥.
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This result combined with (A.9) yields

L(Θ) = c`

((
∑
i∈I

Θi

)
∩〈R〉⊥

)
= c`

(
∑
i∈I

Θi

)
∩〈R〉⊥. (A.11)

On the other hand, it holds that

L(Θ)⊂ L(Θ)+∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
⊂ L(Θ)+

((
∑
i∈I

c`(Θi)

)
∩〈R〉⊥

)

⊂ L(Θ)+

(
c`

(
∑
i∈I

Θi

)
∩〈R〉⊥

)
,

(A.12)

where the first inclusion comes from Claim 6.2C, and the last inclusion is due
to Corollary 6.6.2 of Rockafellar (1970).

CLAIM 6.2E: It holds that

L(Θ)+

(
c`

(
∑
i∈I

Θi

)
∩〈R〉⊥

)
⊂ c`

(
∑
i∈I

Θi

)
∩〈R〉⊥.

PROOF : Take θ ∈ L(Θ)+
(
c`
(
∑i∈I Θi

)
∩〈R〉⊥

)
. Then there exist η ∈ L(Θ) and

θ ∈ c`
(
∑i∈I Θi

)
∩〈R〉⊥ such that θ = η +θ . Thus we can find a sequence {θ n}

in ∑i∈I Θi such that θ
n→ θ . Therefore we have η +θ

n ∈ L(Θ)+∑i∈I Θi. Since
L(Θ)⊂L (∑i Θi) by definition, applying the same arguments in the proof of (1)
of Proposition 4.1 yields

∑
i∈I

Θi = L(Θ)+∑
i∈I

Θi.

As a consequence, we have η+θ
n ∈∑i∈I Θi, which implies η+θ ∈ c`(∑i∈I Θi).

Since η ∈ 〈R〉⊥ and θ ∈ 〈R〉⊥, it is clear that η +θ ∈ 〈R〉⊥ Therefore η +θ ∈
c`(∑i∈I Θi)∩〈R〉⊥. Hence the claim is proved.

It follows from (A.11), (A.12) and Claim 6.2E that

L(Θ) = L(Θ)+∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
.
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Since each c`(Θi) is in 〈R〉+M(Θ), this result implies that

∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
= {0}.

Thus it follows from (A.10) that

∑
i∈I

(
c`(Θi)∩{θ ∈ RJ : R ·θ = ωi}

)
⊂ L(Θ) = ∑

i∈I
Θi(ωi).

Consequently, (iii) of Assumption (A7) holds as well. Hence we conclude that
(C7) implies Assumption (A7).
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